In this paper, we study the existence and multiplicity of solutions with a prescribed L-2-norm for a class of nonlinear fractional Choquard equations in Double-struck capital R-N: (-Delta)su-lambda u=(kappa a*|u|p-2u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${( - \Delta )s}u - \lambda u = ({\kappa _a}*|u{|{p - {2_u}}})$$\end{document} where N > 3, s is an element of (0, 1), alpha is an element of (0, N), p is...