版权说明 操作指南
首页 > 成果 > 详情

Existence and local uniqueness of bubbling solutions for the Grushin critical problem

认领
导出
Link by 万方学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Gheraibia, Billel*;Wang, Chunhua;Yang, Jing
通讯作者:
Gheraibia, Billel
作者机构:
[Wang, Chunhua; Gheraibia, Billel] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China.
[Wang, Chunhua; Gheraibia, Billel] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Hubei, Peoples R China.
[Yang, Jing] Jiangsu Univ Sci & Technol, Coll Math & Phys, Zhenjiang 212003, Jiangsu, Peoples R China.
通讯机构:
[Gheraibia, Billel] C
Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China.
Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Hubei, Peoples R China.
语种:
英文
关键词:
In this paper;we study the following Grushin critical problem $$ -\Delta u(x)=\Phi(x)\frac{u^{\frac{N}{N-2}}(x)} {|y|};u>0;\text{in}\;\mathbb R^{N};$$ where $x=(y;z)\in\mathbb R^{k}\times \mathbb R^{N-k};N\geq 5;\Phi(x)$ is positive and periodic in its the $\bar{k}$ variables $(z_{1};z_{\bar{k}});1\leq \bar{k} < \frac{N-2}{2}.$ Under some suitable conditions on $\Phi(x)$ near its critical point;we prove that the problem above has solutions with infinitely many bubbles. Moreover;we also show that the bubbling solutions obtained in our existence result are locally unique. Our result implies that some bubbling solutions preserve the symmetry from the potential $\Phi(x).$ Published: January/February 2019 First available in Project Euclid: 11 December 2018 zbMATH: 07031709 MathSciNet: MR3909979 Digital Object Identifier: 10.57262/die/1544497286 Subjects: Primary: 35B40;35B45;35J40
期刊:
DIFFERENTIAL AND INTEGRAL EQUATIONS
ISSN:
0893-4983
年:
2019
卷:
32
期:
1-2
页码:
49-90
基金类别:
Authors would like to thank the referee for helpful comments upon which this paper was revised. This work was partially supported by NSFC (No.11671162, No.11601194) and CCNU18CXTD04.
机构署名:
本校为第一且通讯机构
院系归属:
数学与统计学学院
摘要:
In this paper, we study the following Grushin critical problem $$ -\Delta u(x)=\Phi(x)\frac{u^{\frac{N}{N-2}}(x)} {|y|},\,\,\,\,u>0,\,\,\,\text{in}\,\,\,\mathbb R^{N}, $$ where $x=(y,z)\in\mathbb R^{k}\times \mathbb R^{N-k},N\geq 5,\Phi(x)$ is positive and periodic in its the $\bar{k}$ variables $(z_{1},...,z_{\bar{k}}),1\leq \bar{k} < \frac{N-2}{2}.$ Under some suitable conditions on $\Phi(x)$ near its critical point, we prove that the problem above has solutions with infinitely many bubbles. Moreover, we also show that the bubbling solutions obtained in our existence result are locally uniqu...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com