版权说明 操作指南
首页 > 成果 > 详情

2-D Seismic Data Reconstruction via Truncated Nuclear Norm Regularization

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zhang, Wanjuan;Fu, Lihua*;Zhang, Meng;Cheng, Wenting
通讯作者:
Fu, Lihua
作者机构:
[Cheng, Wenting; Fu, Lihua; Zhang, Wanjuan] China Univ Geosci, Sch Math & Phys, Wuhan 430074, Peoples R China.
[Zhang, Meng] Cent China Normal Univ, Sch Comp Sci, Wuhan 430079, Peoples R China.
通讯机构:
[Fu, Lihua] C
China Univ Geosci, Sch Math & Phys, Wuhan 430074, Peoples R China.
语种:
英文
关键词:
Image reconstruction;Transforms;Manganese;Minimization;Computational modeling;Indexes;Interpolation;Nuclear norm;rank estimate;rank-reduction (RR);seismic data reconstruction;truncated nuclear norm regularization (TNNR)
期刊:
IEEE Transactions on Geoscience and Remote Sensing
ISSN:
0196-2892
年:
2020
卷:
58
期:
9
页码:
6336-6343
基金类别:
Manuscript received June 6, 2019; revised October 29, 2019 and January 15, 2020; accepted February 19, 2020. Date of publication March 13, 2020; date of current version August 28, 2020. This study was financially supported by the National Key R&D Program of China (No. 2018YFC1503705), Science and Technology Research Project of Hubei Provincial Department of Education (B2017597), Hubei Subsurface Multi-scale Imaging Key Laboratory (China University of Geosciences) under grants (SMIL-2018-06) and the Fundamental Research Funds for the Central Universities under Grants CCNU19TS020. (Corresponding author: Lihua Fu.) Wanjuan Zhang, Lihua Fu, and Wenting Cheng are with the School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China (e-mail: wanj.zhang@cug.edu.cn; lihuafu@cug.edu.cn; wtcheng@cug.edu.cn).
机构署名:
本校为其他机构
院系归属:
计算机学院
摘要:
Rank-reduction (RR) methods have been widely applied for reconstructing seismic data. The popular convex relaxation formulation of RR is nuclear norm minimization (NNM), which is capitalized on its convexity. Consequently, global optimization can be effectively achieved with NNM method. However, NNM minimizes the summation of all singular values and is therefore not equivalent to the minimum of the rank function; in fact, the rank of the matrix is equal to the number of nonzero singular values. Thus, NNM is not a good approximation to the origi...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com