In this paper, we consider the existence of nontrivial weak solutions to a double critical problem involving a fractional Laplacian with a Hardy term:
0.1
$${( - \Delta )^s}u - \gamma {u \over {{{\left| x \right|}^{2s}}}} = {{{{\left| u \right|}^{2_s^ * (\beta ) - 2}}u} \over {{{\left| x \right|}^\beta }}} + \left[ {{I_\mu } * {F_\alpha }( \cdot ,u)} \right](x){f_\alpha }(x,u),\;\;\;\;u \in {\dot H^{^s}}({\mathbb{R}^n}),$$
where
$$s \in (0,1),0 \le \alpha ,\beta < 2c < n,\mu \in (0,n),\gamma < {\gamma _H},{I_\mu }(x) = {\le...