版权说明 操作指南
首页 > 成果 > 详情

Three-Role-Community Evolutionary Algorithm for Constrained Multi-objective Optimization Problems

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
会议论文
作者:
Wang, Denghui;Guo, Jinglei;Deng, Yameng
通讯作者:
Guo, JL
作者机构:
[Guo, Jinglei; Deng, Yameng; Wang, Denghui; Guo, JL] Cent China Normal Univ, Sch Comp Sci, Wuhan, Peoples R China.
通讯机构:
[Guo, JL ] C
Cent China Normal Univ, Sch Comp Sci, Wuhan, Peoples R China.
语种:
英文
关键词:
Evolutionary algorithm;Constrained multi-objective optimization;community evolutionary algorithm;Multitask optimization
期刊:
Lecture Notes in Computer Science
ISSN:
0302-9743
年:
2024
卷:
14862
页码:
146-158
会议名称:
20th International Conference on Intelligent Computing (ICIC)
会议论文集名称:
Lecture Notes in Computer Science
会议时间:
AUG 05-08, 2024
会议地点:
Tianjin Univ Sci & Tech, Tianjin, PEOPLES R CHINA
会议主办单位:
Tianjin Univ Sci & Tech
主编:
Huang, DS Zhang, X Chen, W
出版地:
152 BEACH ROAD, #21-01/04 GATEWAY EAST, SINGAPORE, 189721, SINGAPORE
出版者:
SPRINGER-VERLAG SINGAPORE PTE LTD
ISBN:
978-981-97-5577-6; 978-981-97-5578-3
机构署名:
本校为第一且通讯机构
院系归属:
计算机学院
摘要:
Inspired by the concept of divide-and-conquer, existing multi-task/ multi-population constraint evolutionary algorithms (CMOEAs) have often employed an auxiliary population that disregards all constraints in order to simplify the problem. However, when dealing with complex Constraint Pareto Fronts (CPF), many existing approaches encounter difficulties in maintaining diversity and avoiding local optima. To address the above issue, the Three-role-community based CMOEA (TRC) which focuses on roles within the population is introduced to eliminate the burden of knowledge transfer between multi-task...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com