版权说明 操作指南
首页 > 成果 > 详情

Adversarial Domain Adaptation Network for Semantic Role Classification

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Yang, Haitong*;Zhou, Guangyou;He, Tingting(何婷婷);Li, Maoxi
通讯作者:
Yang, Haitong
作者机构:
[He, Tingting; Yang, Haitong; Zhou, Guangyou] Cent China Normal Univ, Sch Comp, Wuhan, Hubei, Peoples R China.
[Li, Maoxi] Jiangxi Normal Univ, Sch Comp Informat Engn, Nanchang 330022, Jiangxi, Peoples R China.
通讯机构:
[Yang, Haitong] C
Cent China Normal Univ, Sch Comp, Wuhan, Hubei, Peoples R China.
语种:
英文
关键词:
argument classification;domain adaption;adversarial domain adaptation;supervised learning
期刊:
IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS
ISSN:
1745-1361
年:
2019
卷:
E102.D
期:
12
页码:
2587-2594
基金类别:
National Natural Science Foundation of ChinaNational Natural Science Foundation of China [61702209, 61573163, 61662031]; self-determined research funds of CCNU from the colleges' basic research and operation of MOE [20205170149]
机构署名:
本校为第一且通讯机构
院系归属:
计算机学院
摘要:
In this paper, we study domain adaptation of semantic role classification. Most systems utilize the supervised method for semantic role classification. But, these methods often suffer severe performance drops on out-of-domain test data. The reason for the performance drops is that there are giant feature differences between source and target domain. This paper proposes a framework called Adversarial Domain Adaption Network (ADAN) to relieve domain adaption of semantic role classification. The idea behind our method is that the proposed framework can derive domain-invariant features via adversa...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com