版权说明 操作指南
首页 > 成果 > 详情

Keywords Extraction Based on Word2Vec and TextRank

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文、会议论文
作者:
Yong Zhang;Fen Chen;Wufeng Zhang;Haoyang Zuo;Fangyuan Yu
作者机构:
[Yong Zhang; Fen Chen; Wufeng Zhang; Haoyang Zuo; Fangyuan Yu] Computer School, Central China Normal University, Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Wuhan, China
语种:
英文
关键词:
Big data;Deep learning;Semantics;Transfer matrix method;Academic paper;Keyword extraction;Keywords extraction;Semantic graphs;Semantic information;Semantic representation;Word graphs;Word similarity;Extraction
期刊:
ICBDE '20: Proceedings of the 2020 3rd International Conference on Big Data and Education
年:
2020
卷:
2
页码:
Pages 37–42
会议论文集名称:
ICBDE '20: Proceedings of the 2020 3rd International Conference on Big Data and Education
出版地:
New York, NY, United States
出版者:
Association for Computing Machinery
ISBN:
9781450374989
基金类别:
This work was partially supported by National Natural Science Foundation of China (61977032) and Project of State Language Commission of China (ZDI135-99). We would thank the anonymous reviewers for their hard working. Fen Chen is the corresponding author.
机构署名:
本校为第一机构
院系归属:
计算机学院
摘要:
In order to improve the performance of keyword extraction by enhancing the semantic representations of documents, we propose a method of keyword extraction which exploits the document's internal semantic information and the semantic representations of words pre-trained by massive external documents. Firstly, we utilize the deep learning tool Word2Vec to characterize the external document information, and evaluate the similarity between the words by the cosine distance, thus we obtain the semantic information between words in the external documents. Then, the word-to-word similarity is used to ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com