版权说明 操作指南
首页 > 成果 > 详情

An optimized pruning-based outlier detecting algorithm

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文、会议论文
作者:
Wang, Jinghua*;Zhao, Xinxiang;Jin, Peng;Zhang, Guoyan
通讯作者:
Wang, Jinghua
作者机构:
[Zhang, Guoyan; Wang, Jinghua; Zhao, Xinxiang; Jin, Peng] Cent China Normal Univ, Acad Comp Sci, Wuhan, Hubei, Peoples R China.
通讯机构:
[Wang, Jinghua] C
Cent China Normal Univ, Acad Comp Sci, Wuhan, Hubei, Peoples R China.
语种:
英文
关键词:
Clustering;Data mining;Outlier detection;Pruning
期刊:
Applied Mechanics and Materials
ISSN:
1660-9336
年:
2013
卷:
411-414
页码:
1076-1080
会议名称:
2nd International Conference on Information Technology and Management Innovation, ICITMI 2013
会议论文集名称:
Applied Mechanics and Materials
会议时间:
23 July 2013 through 24 July 2013
会议地点:
Zhuhai, PEOPLES R CHINA
会议主办单位:
[Wang, Jinghua;Zhao, Xinxiang;Jin, Peng;Zhang, Guoyan] Cent China Normal Univ, Acad Comp Sci, Wuhan, Hubei, Peoples R China.
主编:
Yarlagadda, P Yang, SF Lee, KM
出版地:
KREUZSTRASSE 10, 8635 DURNTEN-ZURICH, SWITZERLAND
出版者:
TRANS TECH PUBLICATIONS LTD
ISBN:
9783037858646
机构署名:
本校为第一且通讯机构
院系归属:
计算机学院
摘要:
An Optimized Pruning-based Outlier Detecting algorithm is proposed based on the density-based outlier detecting algorithm (LOF algorithm). The calculation accuracy and the time complexity of LOF algorithm are not ideal, so two steps are taken to reduce the amount of calculation and improve the calculation accuracy for LOF algorithm. Firstly, using cluster pruning technique to preprocess data set, at the same time filtering the non-outliers based on the differences of cluster models to avoid the error pruning of outliers located at the edge of clusters, different cluster models are output by in...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com