版权说明 操作指南
首页 > 成果 > 详情

Automatic Understanding and Formalization of Plane Geometry Proving Problems in Natural Language: A Supervised Approach

认领
导出
Link by 万方学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Gan, Wenbin*;Yu, Xinguo(余新国);Wang, Mingshu
通讯作者:
Gan, Wenbin
作者机构:
[Yu, Xinguo; Gan, Wenbin; Wang, Mingshu] Cent China Normal Univ, Natl Engn Res Ctr E Learning, Wuhan, Hubei, Peoples R China.
通讯机构:
[Gan, Wenbin] C
Cent China Normal Univ, Natl Engn Res Ctr E Learning, Wuhan, Hubei, Peoples R China.
语种:
英文
关键词:
Understanding geometry problems;formalized geometric propositions;relation extraction;automatic solving;relation identification
期刊:
INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS
ISSN:
0218-2130
年:
2019
卷:
28
期:
4
页码:
1940003
基金类别:
This study is funded by the Humanities and Social Sciences Foundation of the Ministry of Education (No. 19YJA880078). The authors gratefully acknowledge
机构署名:
本校为第一且通讯机构
院系归属:
国家数字化学习工程技术研究中心
摘要:
Automatically understanding natural language problems is a long-standing challenging research problem in automatic solving. This paper models the understanding of geometry problems as a problem of relation extraction, instead of as the problem of semantic understanding of natural language. Then it further proposes a supervised machine learning method to extract geometric relations, targeting to produce a group of relations to represent the given geometry problem. This method identifies the actual geometric relations from the relation candidates using a classifier trained from the labelled exam...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com