版权说明 操作指南
首页 > 成果 > 详情

Fusion weighted features and BiLSTM-attention model for argument mining of EFL writing

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Yang, Jincai;Zheng, Meng;Liu, Yingliang
通讯作者:
Liu, Y.
作者机构:
[Zheng, Meng; Yang, Jincai] Cent China Normal Univ, Sch Comp Sci, Wuhan, Peoples R China.
[Liu, Yingliang] Wuhan Univ Technol, Sch Foreign Languages, Wuhan, Peoples R China.
通讯机构:
[Liu, Y.] S
School of Foreign Languages, China
语种:
英文
关键词:
argument mining;artificial intelligence;deep learning;EFL writing;Toulmin’s model
期刊:
FRONTIERS IN PSYCHOLOGY
ISSN:
1664-1078
年:
2023
卷:
14
页码:
1049266
基金类别:
This work was supported by a research grant from China Social Science Research Foundation (Grant No: 19BYY229).
机构署名:
本校为第一机构
院系归属:
计算机学院
摘要:
Argument mining (AM), an emerging field in natural language processing (NLP), aims to automatically extract arguments and the relationships between them in texts. In this study, we propose a new method for argument mining of argumentative essays. The method generates dynamic word vectors with BERT (Bidirectional Encoder Representations from Transformers), encodes argumentative essays, and obtains word-level and essay-level features with BiLSTM (Bi-directional Long Short-Term Memory) and attention training, respectively. By integrating these two...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com