A radial-azimuthal stability analysis of a geometrically thin, gas-pressure-dominated accretion disk is presented. In the purely radial perturbation case, the disk is pulsationally unstable to the acoustic modes but stable to the thermal and viscous modes. If the coupling of radial and azimuthal perturbations is considered, the stability properties of the disk are different. With the increase of azimuthal wavenumber, the acoustic modes tend to become stable while the viscous mode becomes unstable. The acoustic instability exists only for large viscosity and small azimuthal wavenumber, while th...