<abstract><p>We study the following fractional Schrödinger equation</p>
<p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \label{eq0.1} \varepsilon^{2s}(-\Delta)^s u + V(x)u = f(u), \,\,x\in\mathbb{R}^N, \end{equation*} $\end{document} </tex-math> </disp-formula></p>
<p>where $ s\in(0,1) $. Under some conditions on $ f(u) $, we show that the problem has a family of solutions concentrating at any finite given local minima of $ V $ provided that ...