版权说明 操作指南
首页 > 成果 > 详情

Hyperbolic embedding of discrete evolution graphs for intelligent tutoring systems

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Liu, Shengyingjie;Yang, Zongkai;Liu, Sannyuya;Liang, Ruxia;Sun, Jianwen;...
通讯作者:
Li, Q
作者机构:
[Yang, Zongkai; Shen, Xiaoxuan; Liu, Shengyingjie; Liu, Sannyuya; Li, Qing; Liang, Ruxia; Li, Q; Sun, Jianwen] Cent China Normal Univ, Fac Artificial Intelligence Educ, Wuhan 430079, Peoples R China.
[Yang, Zongkai; Shen, Xiaoxuan; Liu, Shengyingjie; Liu, Sannyuya; Li, Qing; Liang, Ruxia; Sun, Jianwen] Cent China Normal Univ, Natl Engn Res Ctr Educ Big Data, Wuhan 430079, Peoples R China.
[Yang, Zongkai; Liu, Sannyuya] Cent China Normal Univ, Natl Engn Res Ctr Elearning, Wuhan 430079, Peoples R China.
通讯机构:
[Li, Q ] C
Cent China Normal Univ, Fac Artificial Intelligence Educ, Wuhan 430079, Peoples R China.
语种:
英文
关键词:
Intelligent tutoring systems;Graph embedding;Dynamic graph;Hyperbolic embedding
期刊:
Expert Systems with Applications
ISSN:
0957-4174
年:
2024
卷:
241
页码:
122451
基金类别:
National Key R&D Program of China [2022ZD0117103]; National Natural Science Foundation of China [62293554, 62107017, 62207017]; China Postdoctoral Science Foundation, China [2020M682454, 2022M711282]; Higher Education Science Research Program of China Association of Higher Education [23XXK0301]; Hubei Provincial Natural Science Foundation of China [2022CFB414, 2023AFA020]; Knowledge Innovation Program of Wuhan-Shuguang Project, China [2022010801020287]; Fundamental Research Funds for the Central Universities, China [CCNU22LJ005, CCNU22XJ033]
机构署名:
本校为第一且通讯机构
院系归属:
国家数字化学习工程技术研究中心
摘要:
Intelligent tutoring systems (ITS) have received much attention recently as online learning has taken off and is replacing offline instruction in many cases. It analyses user behavior and customizes personalized learning strategies for users through artificial intelligence technology. ITS encompasses a variety of entities and multiple relations, making it suitable to be represented as a graph. This perfectly aligns with the utilization of graph embedding (GE) for downstream ITS tasks. Existing GE methods cannot effectively model ITS data because the user evolution in ITS is discrete in time. T...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com