版权说明 操作指南
首页 > 成果 > 详情

Predicting LncRNA-disease Association by Autoencoder and Rotation Forest

认领
导出
反馈
分享
QQ微信 微博
成果类型:
会议论文
作者:
Yang, Jincai;Ma, Shunping;Jiang, Xingpeng*
通讯作者:
Jiang, Xingpeng
作者机构:
[Jiang, Xingpeng; Yang, Jincai; Ma, Shunping] Cent China Normal Univ, Sch Comp, Wuhan, Peoples R China.
通讯机构:
[Jiang, Xingpeng] C
Cent China Normal Univ, Sch Comp, Wuhan, Peoples R China.
语种:
英文
关键词:
lncRNA;disease;autoencoder;rotation forest
期刊:
2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM)
ISSN:
2156-1125
年:
2019
页码:
159-164
会议名称:
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
会议论文集名称:
IEEE International Conference on Bioinformatics and Biomedicine-BIBM
会议时间:
NOV 18-21, 2019
会议地点:
San Diego, CA
会议主办单位:
[Yang, Jincai;Ma, Shunping;Jiang, Xingpeng] Cent China Normal Univ, Sch Comp, Wuhan, Peoples R China.
会议赞助商:
IEEE, NSF
主编:
Yoo, IH Bi, JB Hu, X
出版地:
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者:
IEEE
ISBN:
978-1-7281-1867-3
基金类别:
National Key Research and Development Program of China [2017YFC0909502]; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [61532008, 61872157]
机构署名:
本校为第一且通讯机构
院系归属:
计算机学院
摘要:
In the past few years, most disease-related lncRNAs have been identified, but the experimental identification is cost-consuming and time-consuming. It is therefore very important to develop a reliable computational model to predict lncRNA-disease association. In this paper, we propose a method based on similarity, combining autoencoder and rotation forest to predict lncRNA-disease association (SARLDA). This method not only makes use of disease and lncRNA similarities, but also extracts latent low-dimension features and expand the gap between samples to make it easier to predict the association...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com