版权说明 操作指南
首页 > 成果 > 详情

A process-driven deep learning hydrological model for daily rainfall-runoff simulation

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Li, Heng;Zhang, Chunxiao;Chu, Wenhao;Shen, Dingtao;Li, Rongrong
通讯作者:
Zhang, CX
作者机构:
[Zhang, Chunxiao; Chu, Wenhao; Li, Heng] China Univ Geosci Beijing, Sch Informat Engn, 29 Xueyuan Rd, Beijing 100083, Peoples R China.
[Zhang, Chunxiao] Ministy Nat Resources, Observat & Res Stn Beijing Fangshan Comprehens Exp, Beijing 100083, Peoples R China.
[Shen, Dingtao] Cent China Normal Univ, Key Lab Geog Proc Anal & Simulat Hubei Prov, Wuhan 430079, Peoples R China.
[Shen, Dingtao] Cent China Normal Univ, Coll Urban & Environm Sci, Wuhan 430079, Peoples R China.
[Li, Rongrong] Chinese Univ Hong Kong, Inst Space & Earth Informat Sci, Shatin, Hong Kong, Peoples R China.
通讯机构:
[Zhang, CX ] R
Rm 216,3 Teaching Bldg,29,Xueyuan Rd, Beijing 100083, Peoples R China.
语种:
英文
关键词:
Hybrid hydrological modeling;Process-based modeling;Deep learning;Rainfall-runoff simulation
期刊:
Journal of Hydrology
ISSN:
0022-1694
年:
2024
卷:
637
页码:
131434
基金类别:
CRediT authorship contribution statement Heng Li: Writing – review & editing, Writing – original draft, Visualization, Validation, Software, Methodology, Investigation, acquisition, Formal analysis, Data curation, Conceptualization. Chunxiao Zhang: Writing – review & editing, Supervision, Resources, Methodology, acquisition, Conceptualization. Wenhao Chu: Writing – original draft, Methodology, Data curation. Dingtao Shen: Writing – review & editing, Resources, acquisition, Conceptualization. Rongrong Li:
机构署名:
本校为其他机构
院系归属:
城市与环境科学学院
摘要:
Although deep learning (DL) models, especially long-short-term memory (LSTM), demonstrate greater accuracy than process-based models in rainfall-runoff simulation, the predictions from process-based models are more physical than DL models. The main reason is that DL models have almost no process understanding capabilities like process-based models beyond their fitting capability. In this study, we developed a process-driven DL model under a unified DL architecture to improve the process awareness of DL models. To implement the model, a conceptual hydrological model (EXP-HYDRO) is implanted int...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com