Two basic results on S-rings over an Abelian group are the Schur theorem on multipliers and the Wielandt theorem on primitive S-rings over groups with a cyclic Sylow subgroup. Neither of these is directly generalized to the non-Abelian case. Nevertheless, we prove that the two theorems are true for central S-rings over any group, i.e., for S-rings that are contained in the center of the group ring of that group (such S-rings arise naturally in the supercharacter theory). Extending the concept of a B-group introduced by Wielandt, we show that every Camina group is a generalized B-group, whereas...