版权说明 操作指南
首页 > 成果 > 详情

A novel joint biomedical event extraction framework via two-level modeling of documents

认领
导出
Link by 万方学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zhao, Weizhong*;Zhang, Jinyong;Yang, Jincai*杨进才);He, Tingting(何婷婷);Ma, Huifang;...
通讯作者:
Zhao, Weizhong;Yang, Jincai
作者机构:
[Yang, Jincai; He, Tingting; Zhang, Jinyong; Zhao, Weizhong; Zhao, WZ] Cent China Normal Univ, Hubei Prov Key Lab Artificial Intelligence & Smar, Wuhan 430079, Hubei, Peoples R China.
[Yang, Jincai; He, Tingting; Zhang, Jinyong; Zhao, Weizhong; Zhao, WZ] Cent China Normal Univ, Sch Comp, Wuhan 430079, Hubei, Peoples R China.
[He, Tingting; Zhao, Weizhong] Cent China Normal Univ, Natl Language Resources Monitoring & Res Ctr Netw, Wuhan 430079, Hubei, Peoples R China.
[Zhao, Weizhong] Guilin Univ Elect Technol, Guangxi Key Lab Trusted Software, Guilin 541004, Peoples R China.
[Zhao, Weizhong] Guangxi Normal Univ, Guangxi Key Lab Multisource Informat Min & Secur, Guilin 541004, Peoples R China.
通讯机构:
[Zhao, WZ; Yang, JC; Zhao, Weizhong] C
[Zhao, Weizhong] G
Cent China Normal Univ, Hubei Prov Key Lab Artificial Intelligence & Smar, Wuhan 430079, Hubei, Peoples R China.
Cent China Normal Univ, Sch Comp, Wuhan 430079, Hubei, Peoples R China.
Cent China Normal Univ, Natl Language Resources Monitoring & Res Ctr Netw, Wuhan 430079, Hubei, Peoples R China.
语种:
英文
关键词:
Joint biomedical event extraction;Graph convolutional network;Hypergraph;Document-level
期刊:
Information Sciences
ISSN:
0020-0255
年:
2021
卷:
550
页码:
27-40
基金类别:
The work is partially supported by the National Key Research and Development Program of China (2017YFC0909502), the National Natural Science Foundation of China (No. 61532008, No. 61932008, No. 61762078 and No. 61966004), the Wuhan Science and Technology Program (2019010701011392), the Fundamental Research Funds for the Central Universities (CCNU19TD004), Research Fund of Guangxi Key Lab of Multi-source Information Mining & Security (MIMS19-02), and the Guangxi Key Laboratory of Trusted Software (No. kx201905). Authors are grateful to the anonymous reviewers for helpful comments.
机构署名:
本校为第一且通讯机构
院系归属:
计算机学院
摘要:
With the rapid development of information technology, the amount of textual data generated in biomedical field becomes larger and larger. Biomedical event extraction, which is a fundamental information extraction task, has gained a growing interest in biomedical community. Although researchers have proposed various approaches to this task, the performance is still undesirable since previous approaches fail to model biomedical documents effectively. In this paper, we propose an end-to-end framework for document-level joint biomedical event extraction. To better capture the complex relationships...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com