版权说明 操作指南
首页 > 成果 > 详情

Modality-Dependent Sentiments Exploring for Multi-Modal Sentiment Classification

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
会议论文
作者:
Jingzhe Li;Chengji Wang;Zhiming Luo;Yuxian Wu;Xingpeng Jiang
作者机构:
[Zhiming Luo] Department of Artificial Intelligence, Xiamen University, Xiamen, China
Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning
National Language Resources Monitoring and Research Center for Network Media
School of Computer Science, Central China Normal University, Wuhan, China
[Jingzhe Li; Chengji Wang; Yuxian Wu; Xingpeng Jiang] Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning<&wdkj&>National Language Resources Monitoring and Research Center for Network Media<&wdkj&>School of Computer Science, Central China Normal University, Wuhan, China
语种:
英文
关键词:
Multi-modal sentiment analysis;Private feature learning;Contrastive learning
期刊:
IEEE International Conference on Acoustics, Speech and Signal Processing. Proceedings
ISSN:
1520-6149
年:
2024
页码:
7930-7934
会议名称:
ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
会议论文集名称:
ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
会议时间:
14 April 2024
会议地点:
Seoul, Korea, Republic of
出版者:
IEEE
ISBN:
979-8-3503-4486-8
基金类别:
10.13039/501100002858-China Postdoctoral Science Foundation 10.13039/501100012226-Fundamental Research Funds for the Central Universities
机构署名:
本校为其他机构
院系归属:
计算机学院
摘要:
Recognizing human feelings from image and text is a core challenge of multi-modal data analysis, often applied in personalized advertising. Previous works aim at exploring the shared features, which are the matched contents between images and texts. However, the modality-dependent sentiment information (private features) in each modality is usually ignored by cross-modal interactions, the real sentiment is often reflected in one modality. In this paper, we propose a Modality-Dependent Sentiment Exploring framework (MDSE). First, to exploit the private features, we compare shared features with ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com