版权说明 操作指南
首页 > 成果 > 详情

Low-regularity integrators for nonlinear Dirac equations

认领
导出
Link by 万方学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Schratz, Katharina*;Wang, Yan;Zhao, Xiaofei
通讯作者:
Schratz, Katharina
作者机构:
[Schratz, Katharina] Heriot Watt Univ, 4 Pl Jussieu, Paris, France.
[Schratz, Katharina] Sorbonne Univ, LJLL UMR 7598, UPMC, 4 Pl Jussieu, Paris, France.
[Wang, Yan] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China.
[Zhao, Xiaofei] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China.
[Zhao, Xiaofei] Wuhan Univ, Computat Sci Hubei Key Lab, Wuhan 430072, Peoples R China.
通讯机构:
[Schratz, Katharina] H
[Schratz, Katharina] S
Heriot Watt Univ, 4 Pl Jussieu, Paris, France.
Sorbonne Univ, LJLL UMR 7598, UPMC, 4 Pl Jussieu, Paris, France.
语种:
英文
关键词:
Nonlinear Dirac equation;Dirac-Poisson system;exponential-type integrator;low regularity;optimal convergence;splitting schemes
期刊:
MATHEMATICS OF COMPUTATION
ISSN:
0025-5718
年:
2021
卷:
90
期:
327
页码:
189-214
基金类别:
Received by the editor June 22, 2019, and, in revised form, March 24, 2020. 2010 Mathematics Subject Classification. Primary 35Q41, 65M12, 65M70. Key words and phrases. Nonlinear Dirac equation, Dirac–Poisson system, exponential-type integrator, low regularity, optimal convergence, splitting schemes. The first author has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 850941). The second author was supported by the Fundamental Research Funds for the Central Universities CCNU19TD010. The second author is the corresponding author. The third author was partially supported by the Natural Science Foundation of Hubei Province No. 2019CFA007 and the NSFC 11901440.
机构署名:
本校为其他机构
院系归属:
数学与统计学学院
摘要:
In this work, we consider the numerical integration of the nonlinear Dirac equation and the Dirac-Poisson system (NDEs) under rough initial data. We propose an ultra low-regularity integrator (ULI) for solving the NDEs which enables optimal first-order time convergence in H-r for solutions in H-r, i.e., without requiring any additional regularity on the solution. In contrast to classical methods, a ULI overcomes the numerical loss of derivatives and is therefore more efficient and accurate for approximating low regular solutions. Convergence theorems and the extension of a ULI to second order ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com