版权说明 操作指南
首页 > 成果 > 详情

Depth-based human activity recognition via multi-level fused features and fast broad learning system

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Yao, Huang;Yang, Mengting;Chen, Tiantian;Wei, Yantao*;Zhang, Yu
通讯作者:
Wei, Yantao
作者机构:
[Wei, Yantao] Cent China Normal Univ, Sch Educ Informat Technol, Wuhan 430079, Peoples R China.
[Wei, Yantao] Cent China Normal Univ, Hubei Res Ctr Educ Informationizat, Wuhan 430079, Peoples R China.
通讯机构:
[Wei, Yantao] C
Cent China Normal Univ, Sch Educ Informat Technol, Wuhan 430079, Peoples R China.
Cent China Normal Univ, Hubei Res Ctr Educ Informationizat, Wuhan 430079, Peoples R China.
语种:
英文
关键词:
Human activity recognition;broad learning system;multi-level fused features;principal component analysis
期刊:
International Journal of Distributed Sensor Networks
ISSN:
1550-1477
年:
2020
卷:
16
期:
2
页码:
155014772090783
基金类别:
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work has been financially supported by the National Natural Science Foundation of China under Grant 61502195, the Natural Science Foundation of Hubei Province under Grant 2018CFB691, the Fundamental Research Funds for the Central Universities under Grants CCNU19QN023 and CCNU18QN020, and the Humanities and Social Sciences Foundation of the Ministry of Education under Grant 19YJC880079.
机构署名:
本校为第一且通讯机构
院系归属:
教育信息技术学院
摘要:
Human activity recognition using depth videos remains a challenging problem while in some applications the available training samples is limited. In this article, we propose a new method for human activity recognition by crafting an integrated descriptor called multi-level fused features for depth sequences and devising a fast broad learning system based on matrix decomposition for classification. First, the surface normals are computed from original depth maps; the histogram of the surface normal orientations is obtained as a low-level feature by accumulating the contributions from normals, t...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com