版权说明 操作指南
首页 > 成果 > 详情

A Chinese Text Similarity Calculation Algorithm Based on DF_LDA

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
会议论文
作者:
Zhang, Chao;Chen, Li;Li, Qiong*
通讯作者:
Li, Qiong
作者机构:
[Zhang, Chao; Chen, Li] Cent China Normal Univ, Sch Comp, Wuhan, Peoples R China.
[Li, Qiong] Hankou Univ, Sch Comp Sci & Technol, Wuhan, Peoples R China.
通讯机构:
[Li, Qiong] H
Hankou Univ, Sch Comp Sci & Technol, Wuhan, Peoples R China.
语种:
英文
关键词:
DF_LDA;Feature extraction;LDA;Text clustering;Text similarity calculation
期刊:
PROCEEDINGS OF THE 6TH INTERNATIONAL ASIA CONFERENCE ON INDUSTRIAL ENGINEERING AND MANAGEMENT INNOVATION: CORE THEORY AND APPLICATIONS OF INDUSTRIAL ENGINEERING, VOL 1
年:
2016
页码:
627-634
会议名称:
6th International Asia Conference on Industrial Engineering and Management Innovation (IEMI)
会议时间:
JUL 25-26, 2015
会议地点:
Tianjin Univ, Tianjin, PEOPLES R CHINA
会议主办单位:
Tianjin Univ
会议赞助商:
CMES, Chinese Ind Engn Inst
主编:
Qi, E
出版地:
29 AVENUE LAVMIERE, PARIS, 75019, FRANCE
出版者:
ATLANTIS PRESS
ISBN:
978-94-6239-148-2; 978-94-6239-147-5
机构署名:
本校为第一机构
院系归属:
计算机学院
摘要:
In order to reduce Chinese text similarity calculation complexity and improve text clustering accuracy, this paper proposes a new text similarity calculation algorithm based on DF_LDA. First, we use DF method to realize feature extraction; then, we use LDA method to construct text topic model; finally, we use DF_LDA model obtained to calculate text similarity. Due to considering the text semantic and word frequency information, the new method can improve text clustering precision. In addition, DF_LDA method reduces text feature vector dimensions twice; it can efficiently save text similarity c...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com