版权说明 操作指南
首页 > 成果 > 详情

Existence and decays of solutions for fractional Schrödinger equations with general potentials

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Deng, Yinbin;Peng, Shuangjie;Yang, Xian
通讯作者:
Peng, SJ
作者机构:
[Deng, Yinbin; Peng, Shuangjie; Yang, Xian] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China.
[Deng, Yinbin; Peng, Shuangjie] Cent China Normal Univ, Key Lab Nonlinear Anal & Applicat, Minist Educ, Wuhan 430079, Peoples R China.
[Yang, Xian] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China.
通讯机构:
[Peng, SJ ] C
Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China.
Cent China Normal Univ, Key Lab Nonlinear Anal & Applicat, Minist Educ, Wuhan 430079, Peoples R China.
语种:
英文
关键词:
35J15;35A15;35J10
期刊:
Calculus of Variations and Partial Differential Equations
ISSN:
0944-2669
年:
2024
卷:
63
期:
5
页码:
1-30
基金类别:
National R&D Program of China [2023YFA1010002]; NSF of China [12271196, 11931012]
机构署名:
本校为第一且通讯机构
院系归属:
数学与统计学学院
摘要:
We revisit the following fractional Schrödinger equation 0.1 $$\begin{aligned} \varepsilon ^{2s}(-\Delta )^su +Vu=u^{p-1},\,\,\,u>0,\ \ \ \textrm{in}\ {\mathbb {R}}^N, \end{aligned}$$ where $$\varepsilon >0$$ is a small parameter, $$(-\Delta )^s$$ denotes the fractional Laplacian, $$s\in (0,1)$$ , $$p\in (2, 2_s^*)$$ , $$2_s^*=\frac{2N}{N-2s}$$ , $$N>2s$$ , $$V\in C\big ({\mathbb {R}}^N, [0, +\infty )\big )$$ is a general potential. Under various assumptio...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com