We revisit the following fractional Schrödinger equation
0.1
$$\begin{aligned} \varepsilon ^{2s}(-\Delta )^su +Vu=u^{p-1},\,\,\,u>0,\ \ \ \textrm{in}\ {\mathbb {R}}^N, \end{aligned}$$
where
$$\varepsilon >0$$
is a small parameter,
$$(-\Delta )^s$$
denotes the fractional Laplacian,
$$s\in (0,1)$$
,
$$p\in (2, 2_s^*)$$
,
$$2_s^*=\frac{2N}{N-2s}$$
,
$$N>2s$$
,
$$V\in C\big ({\mathbb {R}}^N, [0, +\infty )\big )$$
is a general potential. Under various assumptio...