版权说明 操作指南
首页 > 成果 > 详情

Meta-path reasoning of knowledge graph for commonsense question answering

认领
导出
Link by 万方学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zhang, Miao;He, Tingting*;Dong, Ming
通讯作者:
He, Tingting;Dong, M
作者机构:
[Zhang, Miao] Cent China Normal Univ, Natl Engn Res Ctr E Learning, Wuhan 430079, Peoples R China.
[Zhang, Miao; He, Tingting; Dong, Ming; Dong, M] Cent China Normal Univ, Hubei Prov Key Lab Artificial Intelligence & Smart, Wuhan 430079, Peoples R China.
[Zhang, Miao; He, Tingting; Dong, Ming; Dong, M] Cent China Normal Univ, Natl Language Resources Monitoring & Res Ctr Netwo, Wuhan 430079, Peoples R China.
[He, Tingting; Dong, Ming; Dong, M] Cent China Normal Univ, Sch Comp, Wuhan 430079, Peoples R China.
通讯机构:
[He, TT; Dong, M ] C
Cent China Normal Univ, Hubei Prov Key Lab Artificial Intelligence & Smart, Wuhan 430079, Peoples R China.
Cent China Normal Univ, Natl Language Resources Monitoring & Res Ctr Netwo, Wuhan 430079, Peoples R China.
Cent China Normal Univ, Sch Comp, Wuhan 430079, Peoples R China.
语种:
英文
关键词:
question answering;knowledge graph;graph neural network;meta-path reasoning
期刊:
计算机科学前沿(英文)
ISSN:
2095-2228
年:
2024
卷:
18
期:
1
页码:
181303-null
基金类别:
This work was partially supported by the Key Research and Development Program of Hubei Province (2020BAB017), and the Scientific Research Center Program of National Language Commission (ZDI135-135), and the Fundamental Research Funds for the Central Universities (KJ02502022-0155, CCNU22XJ037).
机构署名:
本校为第一且通讯机构
院系归属:
计算机学院
国家数字化学习工程技术研究中心
摘要:
Commonsense question answering (CQA) requires understanding and reasoning over QA context and related commonsense knowledge, such as a structured Knowledge Graph (KG). Existing studies combine language models and graph neural networks to model inference. However, traditional knowledge graph are mostly concept-based, ignoring direct path evidence necessary for accurate reasoning. In this paper, we propose MRGNN (Meta-path Reasoning Graph Neural Network), a novel model that comprehensively captures sequential semantic information from concepts and paths. In MRGNN, meta-paths are introduced as di...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com