版权说明 操作指南
首页 > 成果 > 详情

Every planar graph without 3-cycles adjacent to 4-cycles and without 6-cycles is (1,1,0)-colorable

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Bai, Ying;Li, Xiangwen*;Yu, Gexin
通讯作者:
Li, Xiangwen
作者机构:
[Bai, Ying; Yu, Gexin; Li, Xiangwen] Huazhong Normal Univ, Dept Math, Wuhan 430079, Peoples R China.
[Bai, Ying; Yu, Gexin; Li, Xiangwen] Huazhong Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China.
[Yu, Gexin] Coll William & Mary, Dept Math, Williamsburg, VA 23185 USA.
通讯机构:
[Li, Xiangwen] H
Huazhong Normal Univ, Dept Math, Wuhan 430079, Peoples R China.
Huazhong Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China.
语种:
英文
关键词:
Planar graphs;Improper coloring;Cycle
期刊:
Journal of Combinatorial Optimization
ISSN:
1382-6905
年:
2017
卷:
33
期:
4
页码:
1354-1364
基金类别:
National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [11571134]
机构署名:
本校为第一且通讯机构
院系归属:
数学与统计学学院
摘要:
Let $$c_{1},c_{2},\ldots ,c_{k}$$ be k non-negative integers. A graph G is $$(c_{1},c_{2},\ldots ,c_{k})$$ -colorable if the vertex set can be partitioned into k sets $$V_{1},V_{2},\ldots ,V_{k}$$ such that for every $$i,1\le i\le k$$ , the subgraph $$G[V_{i}]$$ has maximum degree at most $$c_{i}$$ . Steinberg (Ann Discret Math 55:211–248, 1993) conjectured that every planar graph without 4- and 5-cycles is 3-colorable. Xu and Wang (Sci Math 43:15–24, 20...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com