版权说明 操作指南
首页 > 成果 > 详情

Every planar graph without 5-cycles and K4− and adjacent 4-cycles is (2,0,0)-colorable

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Li, Xiangwen*;Yin, Yuxue;Yu, Gexin
通讯作者:
Li, Xiangwen
作者机构:
[Yu, Gexin; Li, Xiangwen; Yin, Yuxue] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China.
[Yu, Gexin] Coll William & Mary, Dept Math, Williamsburg, VA 23185 USA.
通讯机构:
[Li, Xiangwen] C
Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China.
语种:
英文
关键词:
Coloring;Planar graphs;Steinberg conjecture;Improper coloring;Discharging;Superextendable
期刊:
Discrete Mathematics
ISSN:
0012-365X
年:
2020
卷:
343
期:
2
页码:
111661
基金类别:
National Natural Science Foundation of ChinaNational Natural Science Foundation of China [11571134]; NSFCNational Natural Science Foundation of China [11728102]; NSA grant [H98230-16-1-0316]
机构署名:
本校为第一且通讯机构
院系归属:
数学与统计学学院
摘要:
In 1976, Steinberg conjectured that every planar graph without 4-cycles and 5-cycles is 3-colorable, and in 2003, Borodin and Raspaud further conjectured that every planar graph without 5-cycles and K-4(-) is 3-colorable. Both conjectures are disproved in 2016 by Cohen-Addad et al. In this paper, we prove a relaxation of the conjectures that every planar graph without 5-cycles and K-4(-) and adjacent 4-cycles is (2, 0, 0)-colorable, which improves the results of Chen et al. (2016) and of Li...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com