We consider spike vector solutions for the nonlinear Schrödinger system \begin{equation*} \left\{ \begin{array}{ll} -\varepsilon^{2}\Delta u+P(x)u=\mu u^{3}+\beta v^2u \ \hbox{in}\ \mathbb{R}^3,\\ -\varepsilon^{2}\Delta v+Q(x)v=\nu v^{3} +\beta u^2v \ \ \hbox{in}\ \mathbb{R}^3,\\ u, v >0 \,\ \hbox{in}\ \mathbb{R}^3, \end{array} \right. \end{equation*} where $\varepsilon > 0$ is a small parameter, $P(x)$ and $Q(x)$ are positive potentials, $\mu>0, \nu>0$ are positive constants and $\beta\neq 0$ is a coupling constant. We investigate the effect ...