版权说明 操作指南
首页 > 成果 > 详情

Study of phase transition of Potts model with Domain Adversarial Neural Network

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Chen, Xiangna;Liu, Feiyi;Chen, Shiyang;Shen, Jianmin;Deng, Weibing;...
通讯作者:
Liu, FY
作者机构:
[Yang, Chunbin; Liu, Feiyi; Chen, Shiyang; Deng, Weibing; Li, Wei; Chen, Xiangna; Liu, FY] Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China.
[Yang, Chunbin; Liu, Feiyi; Chen, Shiyang; Deng, Weibing; Li, Wei; Chen, Xiangna; Liu, FY] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China.
[Liu, Feiyi; Papp, Gabor; Liu, FY] Eotvos Lorand Univ, Inst Phys, 1-A Pazmany P Setany, H-1117 Budapest, Hungary.
[Li, Wei] Max Planck Inst Math Sci, D-04103 Leipzig, Germany.
[Shen, Jianmin] Baoshan Univ, Sch Engn & Technol, Baoshan 678000, Peoples R China.
通讯机构:
[Liu, FY ] C
Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China.
Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China.
Eotvos Lorand Univ, Inst Phys, 1-A Pazmany P Setany, H-1117 Budapest, Hungary.
语种:
英文
关键词:
Machine learning;Transfer learning;Domain Adversarial Neural Network;Potts model;Phase transition
期刊:
Physica A-Statistical Mechanics and its Applications
ISSN:
0378-4371
年:
2023
卷:
617
页码:
128666
基金类别:
CRediT authorship contribution statement Xiangna Chen: Investigation, Conceptualization, Methodology, Validation, Writing – original draft. Feiyi Liu: Conceptualization, Methodology, Software, Validation, Writing – review & editing, Supervision. Shiyang Chen: Software, Validation, Writing – review & editing. Jianmin Shen: Conceptualization, Methodology. Weibing Deng: Conceptualization, Writing – review & editing, Supervision, acquisition. Gábor Papp: Software, Validation, Writing – review & editing, acquisition. Wei Li:
机构署名:
本校为第一且通讯机构
院系归属:
物理科学与技术学院
摘要:
A transfer learning method, Domain Adversarial Neural Network (DANN), is introduced to study the phase transition of two-dimensional q-state Potts model. With the DANN, we only need to choose a few labeled configurations automatically as input data, then the critical points can be obtained after training the algorithm. By an additional iterative process, the critical points can be captured to comparable accuracy to Monte Carlo simulations as we demonstrate it for q = 3,4, 5, 7 and 10. The type of phase transition (first or second-order) is also determined at the same time. Meanwhile, for the s...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com