版权说明 操作指南
首页 > 成果 > 详情

Deep-seismic-prior-based reconstruction of seismic data using convolutional neural networksDSP reconstruction using CNN

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Liu, Qun;Fu, Lihua;Zhang, Meng
通讯作者:
Liu, Qun(q.liu@cug.edu.cn);Fu, Lihua(lihuafu@cug.edu.cn)
作者机构:
[Liu, Qun; Fu, Lihua] China Univ Geosci Wuhan, Sch Math & Phys, Wuhan 430074, Peoples R China.
[Zhang, Meng] Cent China Normal Univ, Dept Comp Sci, Wuhan 430079, Peoples R China.
通讯机构:
[Liu, Q.; Fu, L.] C
China University of Geosciences (Wuhan), China
语种:
英文
关键词:
convolutional neural networks;deep seismic prior;encoder-decoder;seismic data reconstruction
期刊:
GEOPHYSICS
ISSN:
0016-8033
年:
2021
卷:
86
期:
2
页码:
V131-V142
基金类别:
The authors would like to thank the associate editor D. Velis and four anonymous reviewers for helping to improve this paper during the revisions. The authors also thank professor S. Fomel for providing shot gathers from the deepwater Gulf of Mexico survey. This research is financially supported by the National Key R&D Program of China (2018YFC1503705), the Science and Technology Research Project of Hubei Provincial Department of Education (B2017597), the Hubei Subsurface Multi-scale Imaging Key Laboratory (China University of Geosciences) (SMIL-2018-06), and the Fundamental Research Funds for the Central Universities (CCNU19TS020).
机构署名:
本校为其他机构
院系归属:
计算机学院
摘要:
The reconstruction of seismic data with missing traces has been a long-standing issue in seismic data processing. Deep learning (DL) has emerged as a popular tool for seismic interpolation; it learns priors from training data sets of incomplete/complete data pairs. However, these DL methods are restricted to training data because they are supervised. When the features of the testing and training data are different, the recovery performance decreases, which prevents practical application. We have introduced a "deep-seismic-prior-based"approach v...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com