版权说明 操作指南
首页 > 成果 > 详情

Cross-language question retrieval with multi-layer representation and layer-wise adversary

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Li, Bo*;Du, Xiaodong;Chen, Meng
通讯作者:
Li, Bo
作者机构:
[Li, Bo; Du, Xiaodong; Chen, Meng] Cent China Normal Univ, Sch Comp Sci, Wuhan, Peoples R China.
通讯机构:
[Li, Bo] C
Cent China Normal Univ, Sch Comp Sci, Wuhan, Peoples R China.
语种:
英文
关键词:
Adversarial learning;Community question answering;Cross-language question retrieval
期刊:
Information Sciences
ISSN:
0020-0255
年:
2020
卷:
527
页码:
241-252
基金类别:
We thank the anonymous reviewers for their valuable comments. This work was co-supported by Humanity and Social Science Youth Foundation of Ministry of Education of China (no. 19YJC870012), Guangdong Province Key Laboratory of Cyber-Physical System, National Natural Science Foundation of China (no. 61977032 ), Research Planning Project of National Language Committee (no. YB135-40), as well as Fundamental Research Funds for the Central Universities (nos. CCNU19ZN010 , CCNU19TS019 ).
机构署名:
本校为第一且通讯机构
院系归属:
计算机学院
摘要:
In cross-language question retrieval (CLQR), users employ a new question in one language to search the community question answering (CQA) archives for similar questions in another language. In addition to the ranking problem in monolingual question retrieval, one needs to bridge the language gap in CLQR. The existing adversarial models for cross-language learning normally rely on a single adversarial component. Since natural languages consist of units of different abstract levels, we argue that crossing the language gap adaptatively on different levels with multiple adversarial components shou...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com