版权说明 操作指南
首页 > 成果 > 详情

Tactile-Based Grasping Stability Prediction Based on Human Grasp Demonstration for Robot Manipulation

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zhao, Zhou;He, Wenhao;Lu, Zhenyu
通讯作者:
Lu, ZY
作者机构:
[Zhao, Zhou] Cent China Normal Univ, Sch Comp Sci, Wuhan 430079, Peoples R China.
[Lu, Zhenyu; He, Wenhao] Univ West England, Fac Environm & Technol, Bristol BS16 1QY, England.
[Lu, Zhenyu; He, Wenhao] Univ West England, Bristol Robot Lab, Bristol BS16 1QY, England.
通讯机构:
[Lu, ZY ] U
Univ West England, Fac Environm & Technol, Bristol BS16 1QY, England.
Univ West England, Bristol Robot Lab, Bristol BS16 1QY, England.
语种:
英文
关键词:
Grasping;Robots;Robot sensing systems;Tactile sensors;Deep learning;Exoskeletons;Sensors;deep learning in grasping and manipulation;learning from experience
期刊:
IEEE ROBOTICS AND AUTOMATION LETTERS
ISSN:
2377-3766
年:
2024
卷:
9
期:
3
页码:
2646-2653
基金类别:
Vice Chancellor's Early Career Researcher (VC ECR) 2023-2025 award of the University of the West of England National Funding Program of China for Post-Doctoral Researchers (Grant Number: GZC20230924)
机构署名:
本校为第一机构
院系归属:
计算机学院
摘要:
To minimize irrelevant and redundant information in tactile data and harness the dexterity of human hands. In this paper, we introduce a novel binary classification network with normalized differential convolution (NDConv) layers. Our method leverages the recent progress in visual-based tactile sensing to significantly improve the accuracy of grasp stability prediction. First, we collect a dataset from human demonstration by grasping 15 different daily objects. Then, we rethink pixel correlation and design a novel NDConv layer to fully utilize spatio-temporal information. Finally, the classifi...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com