版权说明 操作指南
首页 > 成果 > 详情

Multi-Part Adaptive Graph Convolutional Network for Skeleton-Based Action Recognition

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文、会议论文
作者:
Wang, Wei;Xie, Wei;Tu, Zhigang;Li, Wanxin;Jin, Lianghao
通讯作者:
Xie, Wei(xw@mail.ccnu.edu.cn)
作者机构:
[Li, Wanxin; Wang, Wei; Jin, Lianghao; Xie, Wei] Cent China Normal Univ, Hubei Prov Key Lab Artificial Intelligence & Smar, Wuhan, Peoples R China.
[Li, Wanxin; Wang, Wei; Jin, Lianghao; Xie, Wei] Cent China Normal Univ, Sch Comp, Wuhan, Peoples R China.
[Tu, Zhigang] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan, Peoples R China.
语种:
英文
关键词:
Skeleton-based;Action recognition;Graph convolution networks;Multi-part adaptive
期刊:
Proceedings of the International Joint Conference on Neural Networks
ISSN:
2161-4393
年:
2022
卷:
2022-July
页码:
1-7
会议名称:
2022 International Joint Conference on Neural Networks (IJCNN)
会议论文集名称:
2022 International Joint Conference on Neural Networks (IJCNN)
会议时间:
18 July 2022
会议地点:
Padua, Italy
会议主办单位:
[Wang, Wei;Xie, Wei;Li, Wanxin;Jin, Lianghao] Cent China Normal Univ, Hubei Prov Key Lab Artificial Intelligence & Smar, Wuhan, Peoples R China.^[Wang, Wei;Xie, Wei;Li, Wanxin;Jin, Lianghao] Cent China Normal Univ, Sch Comp, Wuhan, Peoples R China.^[Tu, Zhigang] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan, Peoples R China.
出版地:
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者:
IEEE
ISBN:
978-1-6654-9526-4
基金类别:
Collaborative Innovation Center for Informatization and Balanced Development of K-12 Education by MOE [xtzd2021-004]; Hubei Province [xtzd2021-004]; Fundamental Research Funds for the Central Universities [CCNU20TS028]; Teaching research project of CCNU [202013]
机构署名:
本校为第一机构
院系归属:
计算机学院
摘要:
In skeleton-based action recognition task, graph convolutional network has attracted widespread attention and achieved remarkable results. However, most of the current methods are performing graph convolution on the entire skeleton graph, ignoring the fact that people are composed of different body parts. In addition, previous work ignores the temporal and spatial independence and relevance of different parts. Thus, to solve these issues, we optimize the representation of the skeleton graph, graph convolution and temporal convolution respectively. In this work, we propose multi-part adaptive g...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com