版权说明 操作指南
首页 > 成果 > 详情

Task-driven cleaning and pruning of noisy knowledge graph

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Wu, Chao;Zeng, Zeyu;Yang, Yajing;Chen, Mao*;Peng, Xicheng;...
通讯作者:
Chen, Mao;Liu, SNYY
作者机构:
[Chen, Mao; Chen, M; Yang, Yajing; Peng, Xicheng; Liu, Sannyuya; Wu, Chao; Liu, SNYY; Zeng, Zeyu] Cent China Normal Univ, Natl Engn Res Ctr Elearning, Wuhan 430079, Peoples R China.
通讯机构:
[Chen, M; Liu, SNYY ] C
Cent China Normal Univ, Natl Engn Res Ctr Elearning, Wuhan 430079, Peoples R China.
语种:
英文
关键词:
Noisy knowledge graph;Knowledge graph pruning;Multiple inheritance;Taxonomy
期刊:
Information Sciences
ISSN:
0020-0255
年:
2023
卷:
646
页码:
119406
基金类别:
National Natural Science Foundation of China#&#&#62077019
机构署名:
本校为第一且通讯机构
院系归属:
国家数字化学习工程技术研究中心
摘要:
Many knowledge graphs, especially those that are collaboratively or automatically generated, are prone to noise and cross-domain entries, which can impede domain-specific applications. Existing methods for pruning inaccurate or out-of-domain information from knowledge graphs often rely on topological graph-pruning strategies. However, these approaches have two major drawbacks: they may discard logical structure and semantic information, and they allow multiple inheritance. To address these limitations, this study introduces KGPruning, which is a novel approach that can effectively clean and pr...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com