版权说明 操作指南
首页 > 成果 > 详情

Three-Layer Heterogeneous Network Combined With Unbalanced Random Walk for miRNA-Disease Association Prediction

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Yu, Limin;Shen, Xianjun*;Zhong, Duo;Yang, Jincai(杨进才
通讯作者:
Shen, Xianjun
作者机构:
[Yang, Jincai; Shen, Xianjun; Yu, Limin; Zhong, Duo] Cent China Normal Univ, Sch Comp, Wuhan, Hubei, Peoples R China.
[Shen, Xianjun; Yu, Limin; Zhong, Duo] Cent China Normal Univ, Hubei Prov Key Lab Artificial Intelligence & Smar, Wuhan, Peoples R China.
通讯机构:
[Shen, Xianjun] C
Cent China Normal Univ, Sch Comp, Wuhan, Hubei, Peoples R China.
Cent China Normal Univ, Hubei Prov Key Lab Artificial Intelligence & Smar, Wuhan, Peoples R China.
语种:
英文
关键词:
Laplace normalization;LncRNA;miRNA-disease association prediction;three-layer heterogeneous network;unbalanced random walk
期刊:
Frontiers in Genetics
ISSN:
1664-8021
年:
2020
卷:
10
页码:
501186
基金类别:
This research was supported by the National Natural Science Foundation of China (61532008, 61872157, 61932008), the Self-determined Research Funds of CCNU from the Colleges' Basic Research and Operation of MOE (CCNU19QD003) and the National Language Commission Key Research Project (ZDI135-61).
机构署名:
本校为第一且通讯机构
院系归属:
计算机学院
摘要:
miRNA plays an important role in many biological processes, and increasing evidence shows that miRNAs are closely related to human diseases. Most existing miRNA-disease association prediction methods were only based on data related to miRNAs and diseases and failed to effectively use other existing biological data. However, experimentally verified miRNA-disease associations are limited, there are complex correlations between biological data. Therefore, we propose a novel Three-layer heterogeneous network Combined with unbalanced Random Walk for...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com