版权说明 操作指南
首页 > 成果 > 详情

An Improved K-means Clustering Method based on Data Field

认领
导出
反馈
分享
QQ微信 微博
成果类型:
会议论文
作者:
Xu, Cui;Liu, Yuhua*;Xu, Ke
通讯作者:
Liu, Yuhua
作者机构:
[Xu, Cui; Xu, Ke; Liu, Yuhua] Cent China Normal Univ, Sch Comp, Wuhan 430079, Peoples R China.
通讯机构:
[Liu, Yuhua] C
Cent China Normal Univ, Sch Comp, Wuhan 430079, Peoples R China.
语种:
英文
关键词:
Clustering analysis;k-means;data field;splitting clusters;merging clusters
期刊:
INTERNATIONAL CONFERENCE ON CONTROL SYSTEM AND AUTOMATION (CSA 2013)
年:
2013
页码:
454-459
会议名称:
International Conference on Control System and Automation (CSA)
会议时间:
NOV 08-09, 2013
会议地点:
Changsha, PEOPLES R CHINA
会议主办单位:
[Xu, Cui;Liu, Yuhua;Xu, Ke] Cent China Normal Univ, Sch Comp, Wuhan 430079, Peoples R China.
会议赞助商:
Adv Sci Res Ctr
主编:
Liu, H
出版地:
439 DUKE STREET, LANCASTER, PA 17602-4967 USA
出版者:
DESTECH PUBLICATIONS, INC
ISBN:
978-1-60595-130-0
机构署名:
本校为第一且通讯机构
院系归属:
计算机学院
摘要:
Clustering is useful for discovering groups and identifying interesting distributions in the underlying data. At present, k-means algorithm as a method of clustering based on the partition has more applications. By analyzing the problem of k-means, we find the traditional k-means algorithm suffers from some shortcomings, such as requiring the user to give out the number of clusters k in advance, being sensitive to the initial cluster centers, being sensitive to the noise and isolated data, only being applied to the type found in globular clusters, and being easily trapped into a local solution...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com