版权说明 操作指南
首页 > 成果 > 详情

Planar vortex patch problem in incompressible steady flow

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Cao, Daomin*;Peng, Shuangjie(彭双阶);Yan, Shusen
通讯作者:
Cao, Daomin(彭双阶
作者机构:
[Cao, Daomin] Chinese Acad Sci, Inst Appl Math, Beijing 100190, PR, Peoples R China.
[Peng, Shuangjie] Cent China Normal Univ, Sch Math & Stat, Wuhan, Peoples R China.
[Yan, Shusen] Univ New England, Dept Math, Armidale, NSW 2351, Australia.
通讯机构:
[Cao, Daomin] C
Chinese Acad Sci, Inst Appl Math, Beijing 100190, PR, Peoples R China.
语种:
英文
关键词:
Euler equation;Semilinear elliptic equations;Steady solutions;Variational method;Vortex patch
期刊:
Advances in Mathematics
ISSN:
0001-8708
年:
2015
卷:
270
页码:
263-301
基金类别:
Daomin Cao was partially supported by NSFC grants (No. 11271354 and No. 11331010 ) and Beijing Center for Mathematics and Information Interdisciplinary Sciences . Cao was also supported by the Key Laboratory of Random Complex Structures and Data Science, AMSS, Chinese Academy of Sciences ( 2008DP173182 ). S. Peng was supported by NSFC grant (No. 11125101 ), Fund of Distinguished Young Scholar (No. 11125101 ) and Program for Changjiang Scholars and Innovative Research Team in University (No. IRT13006 ). S. Yan was supported by ARC in Australia.
机构署名:
本校为其他机构
院系归属:
数学与统计学学院
摘要:
In this paper, we consider the planar vortex patch problem in an incompressible steady flow in a bounded domain Omega of R-2. Let k be a positive integer and let k(j) be a positive constant, j = 1,..., k. For any given non-degenerate critical point x(0) = (x0,1,..., x(0,k)) of the Kirchhoff-Routh function defined on Omega(k) corresponding to (k1,..., k(k)), we prove the existence of a planar flow, such that the vorticity w of this flow equals a large given positive constant lambda in each small neighborhood of x(0, j), j = 1,..., k, and w = 0 elsewhere. Moreover, as lambda -> +infinity, the vo...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com