Abstract
We study the following fractional logarithmic Schrödinger equation:
(
−
Δ
)
s
u
+
V
(
x
)
u
=
u
log
u
2
,
x
∈
R
N
,
{\left(-\Delta )}^{s}u+V\left(x)u=u\log {u}^{2},\hspace{1em}x\in {{\mathbb{R}}}^{N},
where
N
≥
1
N\ge 1
,
(
−
Δ
)
s
{\left(-\Delta )}^{s}
denotes the fractional Laplace operator,
0
<
s
<
1
0\lt s\lt 1
and
V
(
x
)
∈
C
(
...