版权说明 操作指南
首页 > 成果 > 详情

Multiple solutions for critical quasilinear elliptic equations

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Deng, Yinbin*;Guo, Yuxia;Yan, Shusen
通讯作者:
Deng, Yinbin
作者机构:
[Deng, Yinbin] Cent China Normal Univ, Dept Math, Wuhan 430079, Hubei, Peoples R China.
[Guo, Yuxia] Tsinghua Univ, Dept Math Sci, Beijing, Peoples R China.
[Yan, Shusen] Univ New England, Dept Math, Armidale, NSW 2351, Australia.
通讯机构:
[Deng, Yinbin] C
Cent China Normal Univ, Dept Math, Wuhan 430079, Hubei, Peoples R China.
语种:
英文
期刊:
Calculus of Variations and Partial Differential Equations
ISSN:
0944-2669
年:
2019
卷:
58
期:
1
页码:
1-26
基金类别:
Acknowledgements Deng is supported by NSFC (11771170, 11629101); Guo is supported by NSFC (11771235, 11331010); Yan is supported by ARC (DP170103087) and NSFC (11629101).
机构署名:
本校为第一且通讯机构
院系归属:
数学与统计学学院
摘要:
We study the existence of infinitely many solutions for the following quasilinear elliptic equations with critical growth: where $$ b_{ij}\in C^{1}(\mathbb {R},\mathbb {R})$$ satisfies the growth condition $$|b_{ij}(t)|\sim |t|^{2s-2}$$ at infinity, $$s\ge 1$$ , $$\Omega \subset \mathbb {R}^N$$ is an open bounded domain with smooth boundary, a is a constant. Here we use the notations: $$D_i=\frac{\partial }{\partial x_i}, b'_{ij}(t)=\frac{db_{ij}(t)}{dt}.$$ We will study the effect of the terms $$a|v|^{2...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com