版权说明 操作指南
首页 > 成果 > 详情

NORMALIZED SOLUTIONS FOR THE CHERN-SIMONS-SCHRODINGER EQUATION IN R-2

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Li, Gongbao*;Luo, Xiao
通讯作者:
Li, Gongbao
作者机构:
[Li, Gongbao; Luo, Xiao] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan, Peoples R China.
[Li, Gongbao; Luo, Xiao] Cent China Normal Univ, Sch Math & Stat, Wuhan, Peoples R China.
通讯机构:
[Li, Gongbao] C
Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan, Peoples R China.
Cent China Normal Univ, Sch Math & Stat, Wuhan, Peoples R China.
语种:
英文
关键词:
Bifurcation phenomenon;Chern-Simons-Schrödinger;Constrained minimization;Multiplicity
期刊:
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA
ISSN:
1239-629X
年:
2017
卷:
42
期:
1
页码:
405-428
基金类别:
Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [11371159]; Hubei Key Laboratory of Mathematical Sciences; Program for Changjiang Scholars and Innovative Research Team in UniversityProgram for Changjiang Scholars & Innovative Research Team in University (PCSIRT) [IRT13066]
机构署名:
本校为第一且通讯机构
院系归属:
数学与统计学学院
摘要:
In this paper, we study the existence and multiplicity of solutions with a prescribed L-2-norm for a class of nonlinear Chern Simons Schrodinger equations in R-2 where To get such solutions we look for critical points of the energy functional on the constraints When p = 4, we prove a sufficient condition for the nonexistence of constrain critical points of I on S-r(c) for certain c and get infinitely many minimizers of I on Sr(8 pi). For the value p epsilon (4, +infinity) considered, the functional I is unbounded from below on Sr(c). By using the constrained minimization method on a suitable s...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com