版权说明 操作指南
首页 > 成果 > 详情

Research on Learning Path Recommendation Algorithms in Online Learning Community

认领
导出
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Ye, Jun-min;Xu, Song;Xu, Chen;Luo, Da-xiong;Wang, Zhi-feng;...
作者机构:
[Luo, Da-xiong; Ye, Jun-min; Xu, Song; Xu, Chen; Chen, Shu] Cent China Normal Univ, Sch Comp, Wuhan 430070, Hubei, Peoples R China.
[Wang, Zhi-feng] Cent China Normal Univ, Sch Educ Informat Technol, Wuhan 430070, Hubei, Peoples R China.
语种:
英文
关键词:
Recommendation algorithms;Online learning;Learning path
期刊:
2018 INTERNATIONAL CONFERENCE ON ELECTRICAL, CONTROL, AUTOMATION AND ROBOTICS (ECAR 2018)
ISSN:
2475-885X
年:
2018
卷:
307
页码:
326-333
基金类别:
National Social Science Fund General Project [17BTQ061]
机构署名:
本校为第一且通讯机构
院系归属:
计算机学院
教育信息技术学院
摘要:
Aiming at the problem of "learning defiance" and "information overload" brought by educating big data to learners, this paper proposes an online learning community personalized learning path recommendation algorithm based on ant colony algorithm: in terms of computing pheromone, it combines individuality. Based on the characteristics of the learning path, a learning path scoring method based on multi-factor fuzzy evaluation is proposed to quantify the learning path evaluation as a score to solve the problem that it is difficult for the subjective score to accurately represent the pheromone con...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com