版权说明 操作指南
首页 > 成果 > 详情

UNIFORMLY ACCURATE NESTED PICARD ITERATIVE INTEGRATORS FOR THE DIRAC EQUATION IN THE NONRELATIVISTIC LIMIT REGIME

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Cai, Yongyong;Wang, Yan*
通讯作者:
Wang, Yan
作者机构:
[Cai, Yongyong] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China.
[Wang, Yan] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China.
通讯机构:
[Wang, Yan] C
Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China.
语种:
英文
关键词:
Dirac equation;nonrelativistic limit regime;error bound;uniformly accurate;high-order accuracy;exponential wave integrator;spectral method;35Q41;65M70;65N35;81Q05
期刊:
SIAM JOURNAL ON NUMERICAL ANALYSIS
ISSN:
0036-1429
年:
2019
卷:
57
期:
4
页码:
1602-1624
基金类别:
National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [11771036, U1530401, 91630204]; Fundamental Research Funds for the Central UniversitiesFundamental Research Funds for the Central Universities [CCNU19TD010]
机构署名:
本校为通讯机构
院系归属:
数学与统计学学院
摘要:
This paper is devoted to the construction and analysis of uniformly accurate nested Picard iterative integrators (NPI) for the Dirac equation in the nonrelativistic limit regime. In this regime, there is a dimensionless parameter $\varepsilon\in(0,1]$ inversely proportional to the speed of light and the equation admits propagating waves with $O(1)$ wavelength in space and $O(\varepsilon^2)$ wavelength in time. To overcome the difficulty induced by the temporal $\varepsilon$ dependent oscillation, we present the construction of several NPI methods which are uniformly first-, second-, and third-...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com