版权说明 操作指南
首页 > 成果 > 详情

Positive solutions for a nonlinear Schrödinger-Poisson system

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Wang, Chunhua*;Yang, Jing
通讯作者:
Wang, Chunhua
作者机构:
[Wang, Chunhua] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China.
[Wang, Chunhua] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Hubei, Peoples R China.
[Yang, Jing] Jiangsu Univ Sci & Technol, Sch Sci, Zhenjiang 212003, Peoples R China.
通讯机构:
[Wang, Chunhua] C
Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China.
Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Hubei, Peoples R China.
语种:
英文
关键词:
Nonsymmetric potential;Reduction;Schrödinger-Poisson system
期刊:
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS
ISSN:
1078-0947
年:
2018
卷:
38
期:
11
页码:
5461-5504
基金类别:
2010 Mathematics Subject Classification. Primary: 35J20, 35J60; Secondary: 35B09. Key words and phrases. Schrödinger-Poisson system, nonsymmetric potential, reduction. The authors would like to thank professor Shuangjie Peng for helpful and valuable discussions. This paper was partially supported by NSFC (No. 11671162, No. 11601194) and CCNU18CXTD04. ∗ Corresponding author: Chunhua Wang.
机构署名:
本校为第一且通讯机构
院系归属:
数学与统计学学院
摘要:
In this paper, we study the following nonlinear Schrödinger-Poisson system \begin{document}$\left\{\begin{array}{ll} -\Delta u+u+\epsilon K(x)\Phi(x)u = f(u),& x\in \mathbb{R}^{3} , \\ -\Delta \Phi = K(x)u^{2},\,\,& x\in \mathbb{R}^{3}, \\\end{array}\right.$ \end{document} where \begin{document} $K(x)$ \end{document} is a positive and continuous potential and \begin{document} $f(u)$ \end{document} is a nonlinearity satisfying some decay condition and some non-degeneracy condition, respectively. Under some suitable conditions, which are...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com