版权说明 操作指南
首页 > 成果 > 详情

G-Hadoop: MapReduce across distributed data centers for data-intensive computing

认领
导出
Link by 万方学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Wang, Lizhe*;Tao, Jie;Ranjan, Rajiv;Marten, Holger;Streit, Achim;...
通讯作者:
Wang, Lizhe
作者机构:
[Chen, Dan; Wang, Lizhe] China Univ Geosci, Sch Comp, Wuhan 430074, Peoples R China.
[Wang, Lizhe] Chinese Acad Sci, Ctr Earth Observat & Digital Earth, Beijing 100864, Peoples R China.
[Streit, Achim; Tao, Jie; Marten, Holger] Karlsruhe Inst Technol, Steinbuch Ctr Comp, D-76021 Karlsruhe, Germany.
[Ranjan, Rajiv] CSIRO, ICT Ctr, Informat Engn Lab, Canberra, ACT, Australia.
[Chen, Jingying] Cent China Normal Univ, Natl Engn Ctr E Learning, Beijing, Peoples R China.
通讯机构:
[Wang, Lizhe] C
Chinese Acad Sci, Ctr Earth Observat & Digital Earth, Beijing 100864, Peoples R China.
语种:
英文
关键词:
Cloud computing;Data-intensive computing;Hadoop;MapReduce;Massive data processing
期刊:
Future Generation Computer Systems
ISSN:
0167-739X
年:
2013
卷:
29
期:
3
页码:
739-750
基金类别:
Chinese Academy of SciencesChinese Academy of Sciences; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [61272314]; Natural Science Foundation of Hubei Province of ChinaNatural Science Foundation of Hubei Province [2011CDB159]; Program for New Century Excellent Talents in UniversityProgram for New Century Excellent Talents in University (NCET) [NCET-11-0722]; Specialized Research Fund for the Doctoral Program of Higher EducationSpecialized Research Fund for the Doctoral Program of Higher Education (SRFDP) [20110145110010]; Fundamental Research Funds for the Central Universities (CUG, Wuhan)
机构署名:
本校为其他机构
院系归属:
教育信息技术学院
国家数字化学习工程技术研究中心
摘要:
Recently, the computational requirements for large-scale data-intensive analysis of scientific data have grown significantly. In High Energy Physics (HEP) for example, the Large Hadron Collider (LHC) produced 13 petabytes of data in 2010. This huge amount of data is processed on more than 140 computing centers distributed across 34 countries. The MapReduce paradigm has emerged as a highly successful programming model for large-scale data-intensive computing applications. However, current MapReduce implementations are developed to operate on single cluster environments and cannot be leveraged f...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com