版权说明 操作指南
首页 > 成果 > 详情

An Improved Clustering Method Based on Data Field

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文、会议论文
作者:
Liu, Yuhua*;Xu, Cui;Xu, Ke;Jin, Jianzhi
通讯作者:
Liu, Yuhua
作者机构:
[Xu, Cui; Xu, Ke; Liu, Yuhua; Jin, Jianzhi] Cent China Normal Univ, Sch Comp, Wuhan 430079, Peoples R China.
通讯机构:
[Liu, Yuhua] C
Cent China Normal Univ, Sch Comp, Wuhan 430079, Peoples R China.
语种:
英文
关键词:
Clustering analysis;k-means;data field;splitting clusters;merging clusters
期刊:
Applied Mechanics and Materials
ISSN:
1662-7482
年:
2014
卷:
457-458
页码:
919-925
会议名称:
2nd International Conference on Frontiers of Mechanical Engineering and Materials Engineering (MEME 2013)
会议论文集名称:
Applied Mechanics and Materials
会议时间:
OCT 12-13, 2013
会议地点:
Hong Kong, PEOPLES R CHINA
会议主办单位:
[Liu, Yuhua;Xu, Cui;Xu, Ke;Jin, Jianzhi] Cent China Normal Univ, Sch Comp, Wuhan 430079, Peoples R China.
会议赞助商:
Int Frontiers Sci & Technol Res Assoc, HongKong Control Engn & Informat Sci Res Assoc
主编:
Sung, WP Kao, JCM Chen, R
出版地:
KREUZSTRASSE 10, 8635 DURNTEN-ZURICH, SWITZERLAND
出版者:
TRANS TECH PUBLICATIONS LTD
ISBN:
978-3-03785-924-7
机构署名:
本校为第一且通讯机构
院系归属:
计算机学院
摘要:
By analyzing the problem of k-means, we find the traditional k-means algorithm suffers from some shortcomings, such as requiring the user to give out the number of clusters k in advance, being sensitive to the initial cluster centers, being sensitive to the noise and isolated data, only being applied to the type found in globular clusters, and being easily trapped into a local solution et cetera. This improved algorithm uses the potential of data to find the center data and eliminate the noise data. It decomposes big or extended cluster into several small clusters, then merges adjacent small c...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com