版权说明 操作指南
首页 > 成果 > 详情

Dialogue intent classification with character-CNN-BGRU networks

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Wang, Yufan;Huang, Jiawei;He, Tingting*何婷婷);Tu, Xinhui
通讯作者:
He, Tingting
作者机构:
[He, Tingting; Tu, Xinhui; Wang, Yufan; Huang, Jiawei] Cent China Normal Univ, Sch Comp Sci, Wuhan 430079, Peoples R China.
通讯机构:
[He, Tingting] C
Cent China Normal Univ, Sch Comp Sci, Wuhan 430079, Peoples R China.
语种:
英文
关键词:
Dialogue intent classification;CNN;BGRU;Character neural embeddings
期刊:
Multimedia Tools and Applications
ISSN:
1380-7501
年:
2020
卷:
79
期:
7-8
页码:
4553-4572
基金类别:
This research is supported by the Fundamental Research Funds for Central Universities (CCNU18JCK05), the National Natural Science Foundation of China (61532008), the National Science Foundation of China (61572223), and the National Key Research and Development Program of China (2017YFC0909502).
机构署名:
本校为第一且通讯机构
院系归属:
计算机学院
摘要:
Dialogue intent classification plays a significant role in human-computer interaction systems. In this paper, we present a hybrid convolutional neural network and bidirectional gated recurrent unit neural network (CNN-BGRU) architecture to classify the intent of a dialogue utterance. First, character embeddings are trained and used as the inputs of the proposed model. Second, a CNN is used to extract local features from each utterance, and a maximum pooling layer is applied to select the most crucial latent semantic factors. A bidirectional gated recurrent unit (BGRU) layer architecture is use...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com