Dialogue intent classification plays a significant role in human-computer interaction systems. In this paper, we present a hybrid convolutional neural network and bidirectional gated recurrent unit neural network (CNN-BGRU) architecture to classify the intent of a dialogue utterance. First, character embeddings are trained and used as the inputs of the proposed model. Second, a CNN is used to extract local features from each utterance, and a maximum pooling layer is applied to select the most crucial latent semantic factors. A bidirectional gated recurrent unit (BGRU) layer architecture is use...