版权说明 操作指南
首页 > 成果 > 详情

Clustering phase transition layers with boundary intersection for an inhomogeneous Allen-Cahn equation

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Wei, Suting;Yang, Jun*
通讯作者:
Yang, Jun
作者机构:
[Wei, Suting] South China Agr Univ, Dept Math, Guangzhou 510642, Peoples R China.
[Yang, Jun; Wei, Suting] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China.
[Yang, Jun] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China.
通讯机构:
[Yang, Jun] C
Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China.
Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China.
语种:
英文
关键词:
Inhomogeneous Allen-Cahn equation;clustering phase transition layers;Toda-Jacobi system;modified Fermi coordinates;resonance
期刊:
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS
ISSN:
1534-0392
年:
2020
卷:
19
期:
5
页码:
2575-2616
基金类别:
2010 Mathematics Subject Classification. Primary: 35J60; Secondary: 58J20. Key words and phrases. Inhomogeneous Allen-Cahn equation, clustering phase transition lay- ers, Toda-Jacobi system; modified Fermi coordinates, resonance. Jun Yang is supported by National Natural Science Foundation of China (Grant No. 11771167 and No. 11831009). ∗ Corresponding author.
机构署名:
本校为通讯机构
院系归属:
数学与统计学学院
摘要:
We consider the nonlinear problem of inhomogeneous Allen-Cahn equation $ \epsilon^2\Delta u+V(y)\,(1-u^2)\,u = 0\quad \mbox{in}\ \Omega, \qquad \frac {\partial u}{\partial \nu} = 0\quad \mbox{on}\ \partial \Omega, $ where $ \Omega $ is a bounded domain in $ \mathbb R^2 $ with smooth boundary, $ \epsilon $ is a small positive parameter, $ \nu $ denotes the unit outward normal of $ \partial \Omega $, $ V $ is a positive smooth function on $ \bar\Omega $. Let $ \Gamma\subset\Omega $ be a smooth curve dividing $ \Omega $ into two disjoint regions and intersecting orthogonally with $ \partial\Omega...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com