版权说明 操作指南
首页 > 成果 > 详情

Symmetric vortices for two-component p-Ginzburg-Landau systems

认领
导出
Link by 万方学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Duan, Lipeng;Yang, Jun*
通讯作者:
Yang, Jun
作者机构:
[Duan, Lipeng] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China.
[Yang, Jun] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China.
通讯机构:
[Yang, Jun] G
Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China.
语种:
英文
关键词:
p-Ginzburg-Landau system;Vortices;Existence and Uniqueness;Stability
期刊:
Journal of Mathematical Analysis and Applications
ISSN:
0022-247X
年:
2020
卷:
491
期:
2
页码:
124347
基金类别:
J. Yang is supported by NSFC (No. 11771167 & No. 11831009 ). The first author thanks Dr. Z. Chen for his useful discussions on the proof of Proposition 2.4 . We thank the referees for their useful comments and suggestions.
机构署名:
本校为第一机构
院系归属:
数学与统计学学院
摘要:
Given p > 2 for the following coupled p-Ginzburg-Landau model in R-2 -Delta(p)u(+) + [A(+)(vertical bar u(+)vertical bar(2) - t(+2)) + A(0)(vertical bar u(-)vertical bar(2) - t(-2))]u(+) = 0, -Delta(p)u(-) + [A(+)(vertical bar u(-)vertical bar(2) - t(-2)) + A(0)(vertical bar u(+)vertical bar(2) - t(+2))]u(-) = 0, with the constraints A(+), A(-) > 0. A(0)(2) < A(+)A(-) and t(+), t(-) > 0, we consider the existence of symmetric vortex solutions u(x) = (U-p(+)(r)e(in+theta), U-p(-)(r)e(in-theta )with given degree (n(+), n(-)) is an element of Z(2), and then prove the uniqueness and regularity res...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com