Given p > 2 for the following coupled p-Ginzburg-Landau model in R-2 -Delta(p)u(+) + [A(+)(vertical bar u(+)vertical bar(2) - t(+2)) + A(0)(vertical bar u(-)vertical bar(2) - t(-2))]u(+) = 0, -Delta(p)u(-) + [A(+)(vertical bar u(-)vertical bar(2) - t(-2)) + A(0)(vertical bar u(+)vertical bar(2) - t(+2))]u(-) = 0, with the constraints A(+), A(-) > 0. A(0)(2) < A(+)A(-) and t(+), t(-) > 0, we consider the existence of symmetric vortex solutions u(x) = (U-p(+)(r)e(in+theta), U-p(-)(r)e(in-theta )with given degree (n(+), n(-)) is an element of Z(2), and then prove the uniqueness and regularity res...