版权说明 操作指南
首页 > 成果 > 详情

Binding Number, Minimum Degree and Bipancyclism in Bipartite Graphs

认领
导出
Link by 中国知网学术期刊 Link by 维普学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
SUN Jing;HU Zhiquan
通讯作者:
Jing Sun
作者机构:
[Jing Sun] School of Mathematics and Economics, Hubei University of Education, Wuhan 430205, Hubei, China
[Zhiquan Hu] School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, Hubei, China
通讯机构:
[Jing Sun] S
School of Mathematics and Economics, Hubei University of Education, Wuhan 430205, Hubei, China
语种:
英文
关键词:
balanced bipartite graph;Hamiltonian;bipancyclism;bipartite binding number;minimum degree
期刊:
武汉大学自然科学学报(英文版)
ISSN:
1007-1202
年:
2016
卷:
21
期:
5
页码:
448-452
基金类别:
Supported by the Scientific Research Fund of Hubei Provincial Education Department(B2015021);
机构署名:
本校为其他机构
院系归属:
数学与统计学学院
摘要:
Let G = (V_1,V_2,E) be a balanced bipartite graph with 2n vertices. The bipartite binding number of G, denoted by B(G), is defined to be n if G =K_n and min min | N(S) | / | S | otherwise. We call G bipancyclic if it contains a cycle of every even length m for 4≤m≤2n. A theorem showed that if G is a balanced bipartite graph with 2n vertices, B(G)>3 / 2 and n≥139, then G is bipancyclic. This paper generalizes the conclusion as follows: Let 0

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com