版权说明 操作指南
首页 > 成果 > 详情

Variational method for joint optical flow estimation and edge-aware image restoration

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Tu, Zhigang*;Xie, Wei(谢伟);Cao, Jun;van Gemeren, Coert;Poppe, Ronald;...
通讯作者:
Tu, Zhigang
作者机构:
[van Gemeren, Coert; Poppe, Ronald; Veltkamp, Remco C.; Tu, Zhigang] Univ Utrecht, Dept Informat & Comp Sci, Princetonpl 5, Utrecht, Netherlands.
[Xie, Wei] Cent China Normal Univ, Sch Comp, Luoyu Rd 152, Wuhan, Peoples R China.
[Cao, Jun] Intel Corp, 4500 S Dobson Rd, Chandler, AZ 85224 USA.
通讯机构:
[Tu, Zhigang] U
Univ Utrecht, Dept Informat & Comp Sci, Princetonpl 5, Utrecht, Netherlands.
语种:
英文
关键词:
Edge preserving;Efficient numerical solver;Image sequence restoration;Optical flow
期刊:
Pattern Recognition
ISSN:
0031-3203
年:
2017
卷:
65
页码:
11-25
基金类别:
Our new objective model is a function of variables (u, v, I1, I2). To simultaneously solve all the unknowns, an alternating minimization framework [28] can be used. Since the optical flow terms (i.e. the first and second terms of Eq. (14)) depend on the restored images, and the image restoration terms (i.e. the second and third terms of Eq. (14)) depend on the computed optical flow, we split the objective function into two coupled modules: EO(u,v,I)=λ∫ΩΨS(∥▿u∥2+∥▿v∥2)dxdy+∫ΩΨD((I2(x+u,y+v)−I1(x,y
机构署名:
本校为其他机构
院系归属:
计算机学院
摘要:
The most popular optical flow algorithms rely on optimizing the energy function that integrates a data term and a smoothness term. In contrast to this traditional framework, we derive a new objective function that couples optical flow estimation and image restoration. Our method is inspired by the recent successes of edge-aware constraints (EAC) in preserving edges in general gradient domain image filtering. By incorporating an EAC image fidelity term (IFT) in the conventional variational model, the new energy function can simultaneously estima...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com