版权说明 操作指南
首页 > 成果 > 详情

Video anomaly detection with spatio-temporal dissociation

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Chang, Yunpeng;Tu, Zhigang*;Xie, Wei;Luo, Bin;Zhang, Shifu;...
通讯作者:
Tu, Zhigang
作者机构:
[Chang, Yunpeng; Luo, Bin; Tu, Zhigang; Sui, Haigang] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Hubei, Peoples R China.
[Xie, Wei] Cent China Normal Univ, Sch Comp, LuoyuRd 152, Wuhan, Hubei, Peoples R China.
[Zhang, Shifu] Shenzhen Infinova Co Ltd, Shenzhen 518100, Guangdong, Peoples R China.
[Yuan, Junsong] SUNY Buffalo, Comp Sci & Engn Dept, Buffalo, NY 14260 USA.
通讯机构:
[Tu, Zhigang] W
Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Hubei, Peoples R China.
语种:
英文
关键词:
Deep K-means cluster;Simulate motion of optical flow;Spatio-temporal dissociation;Video anomaly detection
期刊:
Pattern Recognition
ISSN:
0031-3203
年:
2022
卷:
122
页码:
108213
基金类别:
This work was supported by the National Natural Science Foundation of China under Grant 62106177. It was also supported by the Wuhan University-Infinova project No.2019010019. The numerical calculation was supported by the supercomputing system in the Super-computing Center of Wuhan University.
机构署名:
本校为其他机构
院系归属:
计算机学院
摘要:
Anomaly detection in videos remains a challenging task due to the ambiguous definition of anomaly and the complexity of visual scenes from real video data. Different from the previous work which utilizes reconstruction or prediction as an auxiliary task to learn the temporal regularity, in this work, we explore a novel convolution autoencoder architecture that can dissociate the spatio-temporal representation to separately capture the spatial and the temporal information, since abnormal events are usually different from the normality in appearance and/or motion behavior. Specifically, the spat...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com