版权说明 操作指南
首页 > 成果 > 详情

A Novel Urban Traffic Prediction Mechanism for Smart City Using Learning Approach

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文、会议论文
作者:
Niu, Xiaoguang*;Zhu, Ying;Cao, Qingqing;Zhao, Lei;Xie, Wei(谢伟
通讯作者:
Niu, Xiaoguang
作者机构:
[Zhu, Ying; Cao, Qingqing; Niu, Xiaoguang; Zhao, Lei] Wuhan Univ, Comp Sch, Wuhan 430072, Peoples R China.
[Xie, Wei] Cent China Normal Univ, Comp Sch, Wuhan, Peoples R China.
通讯机构:
[Niu, Xiaoguang] W
Wuhan Univ, Comp Sch, Wuhan 430072, Peoples R China.
语种:
英文
关键词:
Environmental resources;Intelligent transportation system;Smart city;Temporal feature learning;Traffic flow condition prediction
期刊:
Communications in Computer and Information Science
ISSN:
1865-0929
年:
2015
卷:
501
页码:
548-557
基金类别:
This work was partially supported by National Key Basic Research Program of China “973 Project” (Grant No. 2011CB707106), Development Program of China “863 Project” (Grant No. 2013AA122301), National Natural Science Foundation of China “NSFC” (Grant No. 61103220, 61303212) and the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT1278).
机构署名:
本校为其他机构
院系归属:
计算机学院
摘要:
Traffic flow condition prediction is a basic problem in the transportation field. It is challenging to play out full potential of temporally-related information and overcome the problem of data sparsity existed in the traffic flow prediction. In this paper, we propose a novel urban traffic prediction mechanism namely C-Sense consisting of two parts: CRF-based temporal feature learning and sequence segments matching. CRF-based temporal feature learning exploits a linear-chain condition random field (CRF) to explore the temporal transformation rule in the traffic flow state sequence with supplem...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com